Less
  • 👋Welcome to Less
  • 🏃 Getting Started
    • A Quick Overview
    • Storage
    • Connectors
    • Modelling
  • 🏃 Exercises
    • Data-Driven Ecommerce
      • Hints
    • Automated Financial Analysis
      • Hints
        • Part 1 - Profit & Loss
        • Part 2 - Metrics
        • Part 3 - Accrual-Based Accounting
    • AI-driven product reviews
      • Hints
  • 🔌 Connectors
    • Intro to Connector
    • Connector Guides
      • AWS Billing
      • Billy
      • Bing Ads
      • Python Connection
      • Customer.io
      • CVR Virk
      • DAWA
      • Dinero
      • DMI
      • ECB Exchange Rates
      • Meta Ads
      • Facebook Page Insights
      • Google Ads
      • Google Analytics
      • Google Sheets
      • Heap.io
      • HubSpot
      • HubSpot Email Marketing (coming soon!)
      • Instagram Page Insights
      • ISO Calendar
      • LinkedIn Ads
      • Mailchimp
      • Matomo
      • Marathon (coming soon!)
      • Mixpanel
      • MongoDB
      • MSSQL
      • MySQL
      • PostgreSQL
      • Salary.dk
      • Slack
      • Stripe
      • Trustpilot (coming soon!)
      • WooCommerce (coming soon!)
      • Zettle
  • 🧊 Modelling
    • Intro to the Canvas
    • Action Guides
      • Basics
        • Input
        • Output
        • Fill
        • Filter
        • Formats
        • Limit
        • Rename
        • Replace
        • Pick
        • Sort
        • Text Transform
        • Unique
      • New Columns
        • Compare
        • Cumulative
        • Date Difference
        • Date Format
        • Date Math
        • Difference
        • Calculate
        • IF Column
        • Text Column
        • Parse JSON
        • Row ID
        • Running Interval
        • Split Columns
      • Reshape
        • Pivot
        • Group By
        • Transpose
      • Merge
        • Append
        • Combine
        • Stack
  • ⛔ Advanced Databases & Security
    • Security
    • Link Database
    • Whitelisting of IPs
  • 🔐 Roles and Permission
    • Basics
    • Abilities
    • Roles
    • Groups
  • 📞 REST API (beta)
    • Basics
    • Endpoints
Powered by GitBook
On this page
  1. 🧊 Modelling
  2. Action Guides
  3. Reshape

Group By

Put data in categories and perform math within groups

PreviousPivotNextTranspose

Last updated 2 years ago

The Group By Actions is very used. It distributed data into certain groups (hence the name group by) and lets you aggregate some values within those groups. So "group by customer type average session_length" could be translated to human language as "put our data in the customer_type groups and provide an average of the session length". Group by's are used all the time and if you want an idea of they look in action, see the video below.

The Group By Action
The Group By Action